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Abstract—The last decade has seen a dramatic growth in the
use of constraint solvers as a computational mechanism, not only
for analysis of software, but also at runtime. Solvers are available
for a variety of logics but are generally restricted to first-order
formulas. Some tasks, however, most notably those involving
synthesis, are inherently higher order; these are typically handled
by embedding a first-order solver (such as a SAT or SMT solver)
in a domain-specific algorithm.

Using strategies similar to those used in such algorithms, we
show how to extend a first-order solver (in this case Kodkod,
a model finder for relational logic used as the engine of the
Alloy Analyzer) so that it can handle quantifications over higher-
order structures. The resulting solver is sufficiently general that
it can be applied to a range of problems; it is higher order, so
that it can be applied directly, without embedding in another
algorithm; and it performs well enough to be competitive with
specialized tools. Just as the identification of first-order solvers
as reusable backends advanced the performance of specialized
tools and simplified their architecture, factoring out higher-order
solvers may bring similar benefits to a new class of tools.

I. INTRODUCTION

As constraint solvers become more capable, they are in-
creasingly being applied to problems previously regarded as
intractable. Program synthesis, for example, requires the solver
to find a single program that computes the correct output
for all possible inputs. This “∃∀” quantifier pattern is a
particularly difficult instance of higher-order quantification,
and no existing general-purpose constraint solver can reliably
provide solutions for problems of this form.

Instead, tools that rely on higher-order quantification use
ad hoc methods to adapt existing solvers to the problem. A
popular technique for the program synthesis problem is called
CEGIS (counterexample guided inductive synthesis) [1], and
involves using a first-order solver in a loop: first, to find a
candidate program, and second, to verify that it satisfies the
specification for all inputs. If the verification step fails, the
resulting counterexample is transformed into a constraint that
is used in generating the next candidate.

In this paper, we present Alloy*, a general-purpose, higher-
order, bounded constraint solver based on the Alloy Ana-
lyzer [2]. Alloy is a specification language combining first-
order logic with relational algebra; the Alloy Analyzer per-
forms bounded analysis of Alloy specifications. Alloy* admits
higher-order quantifier patterns, and uses a general implemen-
tation of the CEGIS loop to perform bounded analysis. It
retains the syntax of Alloy, and changes the semantics only

by expanding the set of specifications that can be analyzed,
making it easy for existing Alloy users to adopt.

Alloy* handles higher-order quantifiers in a generic and
model-agnostic way, meaning that it allows higher-order quan-
tifiers to appear anywhere where allowed by the Alloy syntax,
and does not require any special idiom to be followed. Alloy*
first creates a solving strategy by decomposing an arbitrary
formula (possibly containing nested higher-order quantifiers)
into a tree of subformulas and assigning a decision procedure
to each of them. Each such tree is either (1) a higher-order
“∃∀” pattern, (2) a disjunction where at least one disjunct
is higher-order, or (3) a first-order formula. To solve the
“∃∀” nodes, Alloy* applies CEGIS; for the disjunction leaves,
Alloy* solves each disjunct separately; and for first-order
formulas, Alloy* uses Kodkod [3].

To our knowledge, Alloy* is the first general-purpose
constraint solver capable of solving formulas with higher-
order quantification. Existing solvers either do not admit such
quantifiers, or fail to produce a solution in most cases. Alloy*,
by contrast, is both sound and complete for the given bounds,
and still efficient for many practical purposes.

We have evaluated Alloy* on a variety of case studies
taken from the work of other researchers. In the first, we
used Alloy* to solve classical higher-order NP-complete graph
problems like max-clique, and found it to scale well for uses
in modeling, bounded verification, and fast prototyping. In the
second, we encoded all of the SyGuS [4] program synthesis
benchmarks that do not require bit vectors, and found that,
while state-of-the-art purpose-built synthesizers are typically
faster, Alloy* beats all the reference synthesizers provided by
the competition organizers.

The contributions of this paper include:

● A framework for extending a first-order solver to the
higher-order case, consisting of the design of datatypes
and a general algorithm comprising syntactic transforma-
tions (skolemization, conversion to negation normal form,
etc.) and an incremental solving strategy;

● A collection of case study applications demonstrating the
feasibility of the approach in different domains (including
synthesis of code, execution and bounded verification of
higher-order NP-hard algorithms), and showing encour-
aging performance on standard benchmarks;

● The release of a freely available implementation for
others to use, comprising an extension of Alloy [5].



1 some sig Node {val: one Int}

2 // between every two nodes there is an edge k22

3 pred clique[edges: Node -> Node, clq: set Node] {
4 all disj n1, n2: clq | n1 -> n2 in edges }

5 // no other clique with more nodes k22

6 pred maxClique[edges: Node -> Node, clq: set Node] {
7 clique[edges, clq]
8 no clq2: set Node | clq2!=clq and clique[edges,clq2] and #clq2>#clq }

9 // symmetric and irreflexive k22

10 pred edgeProps[edges: Node -> Node] {
11 (~edges in edges) and (no edges & iden) }

12 // max number of edges in a (k + 1)-free graph with n nodes is
(k−1)n2

2k
13 check Turan {
14 all edges: Node -> Node | edgeProps[edges] implies
15 some mClq: set Node {
16 maxClique[edges, mClq]
17 let n = #Node, k = #mClq, e = (#edges).div[2] |
18 e <= k.minus[1].mul[n].mul[n].div[2].div[k] }
19 } for 7 but 0..294 Int

Figure 1. Automatic checking of Turan’s theorem in Alloy*.

II. EXAMPLE: CLASSICAL GRAPH ALGORITHMS

Classical graph algorithms have become prototypical Alloy
examples, showcasing both the expressiveness of the Alloy
language and the power of the Alloy Analyzer. Many complex
problems can be specified declaratively in only a few lines
of Alloy, and then in a matter of seconds fully automatically
animated (for graphs of small size) by the Alloy Analyzer. This
ability to succinctly specify and quickly solve problems like
these—algorithms that would be difficult and time consum-
ing to implement imperatively using traditional programming
languages—has found its use in many applications, including
program verification [6], [7], software testing [8], [9], fast
prototyping [10], [11], teaching [12], etc.

For a whole category of interesting problems, however,
the current Alloy engine is not powerful enough. Those are
the higher-order problems, for which the specification has
to quantify over relations rather than scalars. Many well-
known graph algorithms fall into this category, including
finding maximal cliques, max cuts, minimum vertex covers,
and various coloring problems. In this section, we show such
graph algorithms can be specified and analyzed using the new
engine implemented in Alloy*.

Suppose we want to check Turán’s theorem, one of the
fundamental results in graph theory [13]. Turán’s theorem
states that a (k + 1)-free graph with n nodes can maximally
have (k−1)n2

2k
edges. A graph is (k + 1)-free if it contains no

clique with k+1 nodes (a clique is a subset of nodes in which
every two nodes are connected by an edge).

Figure 1 shows how Turán’s theorem might be formally
specified in Alloy. A signature is defined to represent the nodes
of the graph (line 1). Next, the clique property is embodied
in a predicate (lines 3–4): for a given edge relation and a set
of nodes clq, every two different nodes in clq are connected
by an edge; the maxClique predicate (lines 6–8) additionally
asserts that no other clique contains more nodes.

Having defined maximal cliques in Alloy, we can proceed
to formalize Turán’s theorem. The Turan command (lines
19–25) asserts that for all possible edge relations that are

(a) A maxClique candidate (b) A counterexample for (a)

(c) Final maxClique instance

Figure 2. An automatically generated instance satisfying maxClique.

symmetric and irreflexive (line 20), if the max-clique in that
graph has k nodes (k=#mClq), the number of selected edges
(e=(#edges).div[2]) must be at most (k−1)n

2

2k
. (The number

of tuples in edges is divided by 2 because the graph in the
setup of the theorem in undirected.)

Running the Turan command was previously not possible.
Although the specification, as given in Figure 1, is allowed by
the Alloy language, trying to execute it causes the Analyzer
to immediately return an error: “Analysis cannot be performed
since it requires higher-order quantification that could not be
skolemized”. In Alloy*, in contrast, this check can be auto-
matically performed to confirm that indeed no counterexample
can be found within the specified scope. The scope we used (7
nodes, ints from 0 to 294) allows for all possible undirected
graphs with up to 7 nodes. The upper bound for ints was
chosen to ensure that the formula for computing the maximal
number of edges ( (k−1)n

2

2k
) never overflows for n ≤ 7 (which

implies k ≤ 7). The check completes in about 45 seconds.
To explain the analysis problems that higher-order quan-

tifiers pose to the standard Alloy Analyzer, and how those
problems are tackled in Alloy*, we look at a simpler task:
finding an instance of a graph with a subgraph satisfying the
maxClique predicate. The problematic quantifier in this case is
the inner “no clq2: set Node | . . .” (line 8) constraint, which
requires checking that for all possible subsets of Node, not one
of them is a clique with more nodes than the given set clq. A
direct translation into the current SAT-based backend would
require the Analyzer to explicitly, and upfront, enumerate
all possible subsets of Node—which would be prohibitively
expensive. Instead, Alloy* implements the CEGIS approach:

1) First, it finds a candidate instance, by searching for a
clique clq and only one set of nodes clq2 that is not a
clique larger than clq. A possible first candidate is given
in Figure 2(a) (with the clique nodes are highlighted in
green). At this point clq2 could have been anything that
is either not a clique or not larger than clq.

2) Next, Alloy* attempts to falsify the previous candidate
by finding, again, only one set of nodes clq2, but this



time such that clq2 is a clique larger than clq, for the
exact (concrete) graph found in the previous step. In this
case, it finds one such counterexample clique (red nodes
in Figure 2(b)) refuting the proposition that clq from the
first step is a maximal clique.

3) Alloy* continues by trying to find another candidate
clique, encoding the previous counterexample to prune
the remainder of the search space (as explained in detail
in Sections III and IV). After several iterations, it finds
the candidate in Figure 2(c) which cannot be refuted, so
it returns that candidate as a satisfying solution.

Once written, the maxClique predicate (despite containing a
higher-order quantification) can be used in other parts of the
model, like any other predicate, just as we used it to formulate
and check Turán’s theorem. In fact, the turan check contains
another higher-order quantifier, so the analysis ends up spawn-
ing two nested CEGIS loops and exhaustively iterating over
them; every candidate instance and counterexample generated
in the process can be opened and inspected in the Alloy
visualizer. (For a screenshot of the user interface, see [5].)

III. BACKGROUND AND KEY IDEAS

Skolemization Many first-order constraint solvers allow
some form of higher-order quantifiers to appear at the language
level. Part of the reason for this is that, in certain cases, quan-
tifiers can be eliminated in a preprocessing step called skolem-
ization. In a model finding setting, every top-level existential
quantifier is eliminated by (1) introducing a skolem constant
for the quantification variable, and (2) replacing every occur-
rence of that variable with the newly created skolem constant.
For example, solving some s: set univ | #s > 2, which is
higher-order, is equivalent to solving $s in univ && #$s > 2,
which is first-order and thus solvable by general purpose con-
straint solvers. (Throughout, following the Alloy convention,
skolem constants will be prefixed with a dollar sign.)

CEGIS CounterExample-Guided Inductive Synthesis [1]
is an approach for solving higher-order synthesis problems,
which is extended in Alloy* to the general problem of
solving higher-order formulas. As briefly mentioned before,
the CEGIS strategy applies only to formulas in the form
∃p∀e⋅s(p, e) and prescribes the following three steps:

(1) search: attempt to find a candidate value for p by solving
∃p∃e⋅s(p, e)—a first-order problem;

(2) verification: if a candidate $p is found, try to verify
it by checking if it holds for all possible bindings for e.
The verification condition, thus, becomes ∀e⋅s($p, e). This
check is done by refutation, i.e., by satisfying the negation of
the verification condition; pushing the negation through yields
∃e⋅¬s($p, e), which, again, is first-order.

(3) induction: if the candidate is verified, a solution is found
and the algorithm terminates. Otherwise a concrete counterex-
ample $ecex is found. The search continues by searching for
another candidate which must also satisfy the counterexample,
that is, solving ∃p∃e⋅s(p, e) ∧ s(p, $ecex). This strategy in
particular tends to be very effective at reducing the search
space and improving the overall scalability.

CEGIS for a general purpose solver Existing CEGIS-
based synthesis tools implement this strategy internally, op-
timizing for the target domain of synthesis problems. The
key insight of this paper is that the CEGIS algorithm can
be implemented, generically and efficiently, inside a general
purpose constraint solver. For an efficient implementation, it
is important that such a solver supports the following:

● Partial Instances. The verification condition must be
solved against the previously discovered candidate; ex-
plicitly designating that candidate as a “partial instance”,
i.e., a part of the solution known upfront, is significantly
more efficient than encoding it with constraints [3].

● Incremental solving. Except for one additional constraint,
the induction step solves exactly the same formula as the
search step. Many modern SAT solvers already allow new
constraints to be added to already solved propositional
formulas, making subsequent runs more efficient (because
all previously learned clauses are readily reusable).

● Atoms as expressions. The induction step needs to be
able to convert a concrete counterexample (given in terms
of concrete atoms, i.e., values for each variable) to a
formula to be added to the candidate search condition. All
atoms, therefore, must be convertible to expressions. This
is trivial for SAT solvers, but requires extra functionality
for solvers offering a richer input language.

● Skolemization. Skolemizing higher-order existential quan-
tifiers is necessary for all three CEGIS steps.

We formalize our approach in Section IV, assuming availabil-
ity of a first-order constraint solver offering all the features
above. In Section V we present our implementation as an
extension to Kodkod [14] (a first-order relational constraint
solver already equipped with most of the required features).

IV. SEMANTICS

We give the semantics of our decision procedure for
bounded higher-order logic in two steps. First, we formalize
the translation of a boolean formula into a Proc datatype
instance (corresponding to an appropriate solving procedure);
next we formalize the semantics of Proc satisfiability solving.

Figure 3 gives an overview of all syntactic domains used
throughout this section. We assume the datatypes in Fig-
ure 3(b) are provided by the solver; on top of these basic
datatypes, Alloy* defines the following additional datatypes:

● FOL—a wrapper for a first-order formula
● OR—a compound type representing a disjunction of Procs
● E

A
—a compound type representing a conjunction of a

first-order formula and a number of higher-order universal
quantifiers (each enclosed in a QP datatype). The intention
of the QP datatype is to hold the original formula,
and a translation of the same formula but quantified
existentially (used later to find candidate solutions).

Figure 4(a) lists all the semantic functions defined in this
paper. The main two are translation of formulas into Procs
(T , defined in Figure 5) and satisfiability solving (S, defined
in Figure 6). Relevant functions assumed to be either exported



(a) Alloy* syntactic domains
QP = QP(forAll: Quant, pExists: Proc)

Proc = FOL(form: Formula)

| OR(disjs: Proc[])

| E
A
(conj: FOL, qps: QP[])

(b) Solver data types
Mult = ONE | SET

Decl = Decl(mult: Mult, var: Expr)

QuantOp = ∀ | ∃
BinOp = ∧ | ∨ | ⇐⇒ | Ô⇒
Formula = Quant(op: QuantOp, decl: Decl, body: Formula)

| BinForm(op: BinOp, lhs, rhs: Formula)

| NotForm(form: Formula)

| ...

Expr = ... // relational expressions, irrelevant here

Figure 3. Overview of the syntactic domains.

(a) Semantic functions
T : Formula→ Proc top-level formula translation
S : Proc → Instance Proc evaluation (solving)
τ : Formula→ Proc intermediate formula translation
⋏ : Proc→ Proc→ Proc Proc composition: conjunction
⋎ : Proc→ Proc→ Proc Proc composition: disjunction

(b) Functions exported by first-order solver
solve : Formula → Instance option first-order solver
eval : Instance → Expr → Value evaluator
replace : Formula → Expr → Value → Formula
nnf : Formula → Formula NNF conversion
skolemize : Formula → Formula skolemization
∧ : Formula → Formula → Formula conjunction
∨ : Formula → Formula → Formula disjunction
TRUE : Formula true formula
FALSE : Formula false formula

(c) Built-in functions
fold : (A → E → A) → A → E[] → A functional fold
reduce : (A → E → A) → E[] → A fold w/o init value
map : (E → T) → E[] → T[] functional map
length : E[] → int list length
hd : E[] → E list head
tl : E[] → E[] list tail
+ : E[] → E[] → E[] list concatenation
× : E[] → E[] → E[] list cross product
fail : String → void runtime error

Figure 4. Overview of used functions: (a) semantic functions, (b)
functions provided by the first-order solver, (c) built-in functions.

by the solver or provided by the host programming language
are listed in Figures 4(b) and 4(c), respectively.

For simplicity of exposition, we decided to exclude the
treatment of bounds from our formalization, as it tends to be
mostly straightforward; we will, however, come back to this
point and accurately describe how the bounds are constructed
before every solver invocation.

T : Formula→ Proc

1. T JfK ≡ τJskolemize nnf fK

τ : Formula→ Proc

2. τJf1∨f2K ≡ T Jf1K ⋎ T Jf2K
3. τJf1∧f2K ≡ τJf1K ⋏ τJf2K
4. τJ∃d ∣ fK ≡ fail “can’t happen”
5. τJ∀d ∣ fK ≡ let p = T J∃d ∣ fK in
6. if d.mult is ONE && p is FOL then
7. FOL(∀d ∣ f )
8. else
9. E

A
(FOL(TRUE), [QP(∀d ∣ f, p)])

10. τJfK ≡ FOL(f )

⋏ : Proc → Proc → Proc

11. p1 ⋏ p2 ≡ match p1, p2 with
12. | FOL, FOL → FOL(p1.form ∧ p2.form)
13. | FOL, OR → OR(map(λp ⋅ p1 ⋏ p, p2.disjs))
14. | FOL, E

A
→ E

A
(p1⋏p2.conj, p2.qps)

15. | OR , OR → OR(map(λp,q ⋅ p ⋏ q, p1.disjs × p2.disjs))
16. | OR , E

A
→ OR(map(λp ⋅ p ⋏ p2, p1.disjs))

17. | E
A
, E

A
→ E

A
(p1.conj ⋏ p2.conj, p1.qps + p2.qps)

18. | _ , _ → p2 ⋏ p1

⋎ : Proc → Proc → Proc

19. p1 ⋎ p2 ≡ match p1, p2 with
20. | FOL, FOL → OR([p1, p2]) //wrong: FOL(p1.form ∨ p2.form)
21. | FOL, OR → OR([p1] + p2.disjs)
22. | FOL, E

A
→ OR([p1, p2])

23. | OR , OR → OR(p1.disjs + p2.disjs)
24. | OR , E

A
→ OR(p1.disjs + [p2])

25. | E
A
, E

A
→ OR([p1, p2])

26. | _ , _ → p2 ⋎ p1

Figure 5. Translation of boolean Formulas to Procs.

Syntax notes Our notation is reminiscent of F#. We use
the “.” syntax to refer to field values of datatype instances.
If the left-hand side in such constructs resolves to a list, we
assume the operation is mapped over the entire list (e.g.,
ea.qps.forAll, is equivalent to map λq ⋅ q.forAll, ea.qps).

A. Translation of Formulas into Proc Objects

The top-level translation function (T , Figure 5, line 1)
ensures that the formula is converted to negation normal
form (NNF), and that all top-level existential quantifiers are
subsequently skolemized away, before the formula is passed
to the τ function. Conversion to NNF pushes the quantifiers
towards the roots of the formula, while skolemization elim-
inates top-level existential quantifiers (including the higher-
order ones). Alloy* applies these techniques aggressively to
achieve completeness in handling arbitrary formulas.

Translating a binary formula (which is either a conjunction
or disjunction, since it is in NNF) involves translating both left-
hand and right-hand sides and composing the resulting Procs
using the corresponding composition operator (lines 2–4). A
disjunction demands that both sides be skolemized again (thus



S : Proc→ Instance option

27. SJpK ≡ match p with
28. | FOL→ solve p.form

29. | OR → if length p.disjs = 0 then None else match SJhd p.disjsK with
30. | None → SJOR(tl p.disjs)K | Some(inst) → Some(inst)
31. | E

A
→ let pcand = fold ⋏, p.conj, p.qps.pExists in

32. match SJpcandK with
33. | None → None
34. | Some(cand)→ let f check = fold ∧, TRUE, p.qps.forAll in
35. match SJT J¬f checkKK with
36. | None → Some(cand)
37. | Some(cex)→ fun repl(q) = replace(q.body, q.decl.var, eval(cex, q.decl.var))
38. let f∗cex = map repl, p.qps.forAll in
39. let fcex = fold ∧, TRUE, f∗cex in SJpcand ⋏ T JfcexKK

Figure 6. The model finding algorithm. The resulting Instance object encodes the solution, if one is found.

the use of T instead of τ ), since they were surely unreachable
by any previous skolemization attempts. This ensures that any
higher-order quantifiers found in a clause of a disjunction will
eventually either be skolemized or converted to an E

A
Proc.

A first-order universal quantifier (determined by d.mult being
equal to ONE) whose body is also first-order (line 6) is simply
enclosed in a FOL Proc (line 7). Otherwise, an E

A
Proc is

returned, wrapping both the original formula (∀d ∣ f ) and the
translation of its existential counterpart (p = T J∃d ∣ fK, used
later to find candidate solutions).

In all other cases, the formula is wrapped in FOL (line 10).
Composition of Procs is straightforward for the most part,

directly following the distributivity laws of conjunction over
disjunction and vice versa. The common goal in all the cases
in lines 11–26 is to reduce the number of Proc nodes. For
example, a conjunction of two E

A
nodes can be merged into a

single E
A

node (line 17), as can a conjunction of a FOL and an
E
A

node (line 14). With disjunction, however, we need to be
more careful. Remember that before applying the ⋎ operator
skolemization had to be performed on both sides (line 2); since
skolemization through disjunction is not sound, it would be
wrong, for example, to try and recombine two FOL Procs into
a single FOL (line 20). Instead, a safe optimization (which we
implemented in Alloy*) would be to modify line 2 to first
check if f1 ∨ f2 is first-order as a whole, and if so return
FOL(f1 ∨ f2).

B. Satisfiability Solving

The procedure for satisfiability solving is given in Figure 6.
A first-order formula (enclosed in FOL) is given to the solver

to be solved directly, in one step (line 28).
An OR Proc is solved by iteratively solving its disjuncts

(lines 29–30). An instance is returned as soon as one is found;
otherwise, None is returned.

The procedure for the E
A

Procs implements the CEGIS
loop (lines 31–39), following the algorithm in Section III.
The candidate condition is a conjunction of the first-order
p.conj Proc and all the existential Procs from p.qps.pExists (line
31); the verification condition is a conjunction of all original

universal quantifiers within this E
A

(line 34). Encoding the
counterexample back into the search formula boils down to
obtaining a concrete value that each quantification variable has
in that counterexample (by calling the eval function exported
by the solver) and embedding that value directly in the body
of the corresponding quantifier (lines 37-39).

C. Treatment of Bounds

Bounds are a required input of any bounded analysis; for
an analysis involving structures, the bounds may include not
only the cardinality of the structures, but may also indicate
that a structure includes or excludes particular tuples. Such
bounds serve not only to finitize the universe of discourse and
the domain of each variable, but may also specify a partial
instance that embodies information known upfront about the
solution to the constraint. If supported by the solver, specifying
the partial instance through bounds (as opposed to enforcing
it with constraints) is an important mechanism that generally
improves scalability significantly.

Although essential, the treatment of bounds in Alloy* is
mostly straightforward—including it in the above formaliza-
tion (Figures 5 and 6) would only clutter the presentation and
obscure the semantics of our approach. Instead, we informally
provide the relevant details next.

Bounds may change during the translation phase by means
of skolemization: every time an existential quantifier is
skolemized, a fresh variable is introduced and a bound for it is
added. Therefore, we associate bounds with Procs, as different
Procs may have different bounds. Whenever a composition of
two Procs is performed, the resulting Proc gets the union of
the two corresponding bounds.

During the solving phase, whenever the solve function is
applied (line 28), bounds must be provided as an argument.
We simply use the bounds associated with the input Proc (p).
When supplying bounds for the translation of the verification
condition (T J¬f checkK, line 37), it is essential to encode the
candidate solution (cand) as a partial instance, to ensure that
the check is performed against that particular candidate, and



not some other arbitrary one. This is done by bounding every
variable from p.bounds to the exact value it was given in cand:

fun add_bound(b, var) = b + r ↦ eval(cand, var)
bcheck = fold add_bound, p.bounds, p.bounds.variables

Finally, when translating the formula obtained from the coun-
terexample (fcex) to be used in a search for the next candidate
(line 39), the same bounds are used as for the current candidate
(pcand.bounds).

V. IMPLEMENTATION

We implemented our decision procedure for higher-order
constraint solving as an extension to Kodkod [14]. Kodkod,
the backend engine used by the Alloy Analyzer, is a bounded
constraint solver for relational first-order logic (thus, ‘vari-
able’, as used previously, translates to ‘relation’ in Kodkod,
and ‘value’ translates to ‘tuple set’). It works by translating
a given relational formula (together with bounds finitizing
relation domains) into an equisatisfiable propositional formula
and using an of-the-shelf SAT solver to check its satisfiability.
The Alloy Analyzer delegates all its model finding (constraint
solving) tasks to Kodkod. No change was needed to the
existing translation from Alloy to Kodkod.

The official Kodkod distribution already offers most of
the required features identified in Section III. While efficient
support for partial instances has always been an integral part of
Kodkod, only the latest version (2.0) comes with incremental
SAT solvers. Kodkod performs skolemization of top-level
(including higher-order) existential quantifiers.

Conversion from atoms to expressions, however, was not
available in Kodkod prior to this work. Being able to treat
all atoms from a single domain as indistinguishable helps
generate a stronger symmetry-breaking predicate. We extended
Kodkod with the ability to create a singleton relation for
each declared atom, after which converting atoms back to
expressions (relations) becomes trivial. We also updated the
symmetry-breaking predicate generator to ignore all such
singleton relations that are not explicitly used. As a result,
this modification does not seem to incur any performance
overhead; we ran the existing Kodkod test suite with and
without the modification and observed no time difference (in
both cases running the 249 tests took around 230s).

Our Java implementation directly follows the semantics
defined in Figures 5 and 6. Additionally, it performs the
following important optimizations: (1) the constructor for OR
data type finds all FOL Procs in the list of received disjuncts
and merges them into one, and (2) it uses incremental solving
to implement line 39 from Figure 6 whenever possible.

VI. CASE STUDY: PROGRAM SYNTHESIS

Program synthesis is one of the most popular applications
of higher-order constraint solving. The goal is to produce a
program that satisfies a given (high-level) specification. The
SyGuS [4] (syntax-guided synthesis) project has proposed
an extension to SMTLIB for encoding such problems. The
project has also organized a competition between solvers for
the format, and provides three reference solvers.

We encoded a subset of the SyGuS benchmarks in Alloy*
to test its expressive power and scalability. These benchmarks
have a standard format, are well tested, and allow comparison
to the performance of the reference solvers, making them a
good target for evaluating Alloy*.

To demonstrate our strategy for encoding program synthesis
problems in Alloy*, we present the Alloy* specification for the
problem of finding a program to compute the maximum of two
numbers (the max-2 benchmark).

We encode the max-2 benchmark in Alloy* using signatures
to represent the production rules of the program grammar,
and predicates to represent both the semantics of programs
and the constraints restricting the target program’s semantics.
Programs are composed of abstract syntax nodes, which can
be integer- or boolean-typed.

abstract sig Node {}
abstract sig IntNode, BoolNode extends Node {}
abstract sig Var extends IntNode {}
one sig X, Y extends Var {}

sig ITE extends IntNode {
condition: BoolNode,
then, elsen: IntNode }

sig GTE extends BoolNode {
left, right: IntNode }

Integer-typed nodes include variables and if-then-else ex-
pressions, while boolean-typed nodes include greater-than-or-
equal expressions. Programs in this space evaluate to integers
or booleans; integers are built into Alloy, but we must model
boolean values explicitly.

abstract sig Bool{} one sig BoolTrue, BoolFalse extends Bool{}

The standard evaluation semantics can be encoded in a
predicate that constrains the evaluation relation. It works by
constraining all compound syntax tree nodes based on the
results of evaluating their children, but does not constrain the
values of variables, allowing them to range over all values.

pred semantics[eval: Node -> (Int+Bool)] {
all n: ITE | eval[n] in Int and
eval[n.condition] = BoolTrue implies
eval[n.then] = eval[n] else eval[n.elsen] = eval[n]

all n: GTE | eval[n] in Bool and
eval[n.left] >= eval[n.right] implies
eval[n] = BoolTrue else eval[n] = BoolFalse

all v: Var | one eval[v] and eval[v] in Int }

The specification says that the maximum of two numbers
is equal to one of them, and greater than or equal to both.

pred spec[root: Node, eval: Node -> (Int+Bool)] {
(eval[root] = eval[X] or eval[root] = eval[Y]) and
(eval[root] >= eval[X] and eval[root] >= eval[Y]) }

Finally, the problem itself requires solving for some ab-
stract syntax tree such that for all possible valuations for the
variables, the specification holds.

pred synth[root: IntNode] {
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[root, eval] }

(A.1)

run synth for 4

We present the results of our evaluation, including a per-
formance comparison between Alloy* and existing program
synthesizers, in Section VIII-B. A similar case study, where
we use Alloy* to synthesize Margrave [15] security policies
that satisfy given properties, can be found in our technical-
report version of this paper [16, Sec. 2.2].



VII. OPTIMIZATIONS

Originally motivated by the formalization of the synthesis
problem (as presented in Section VI), we designed and imple-
mented two general purpose optimizations for Alloy*.

A. Quantifier Domain Constraints

As defined in Listing A.1, the synth predicate, although
logically sound, suffers from serious performance issues. The
main issue is the effect on the CEGIS loop of the implication
inside the universal quantifier. To trivially satisfy the implica-
tion, the candidate search step can simply return an instance
for which the semantics does not hold. Furthermore, adding the
encoding of the counterexample refuting the previous instance
is not going to constrain the next search step to find a program
and a valuation for which the spec holds. This cycle can go
on for unacceptably many iterations.

To overcome this problem, we can add syntax to identify
the constraints that should be treated as part of the bounds of
a quantification. The synth predicate, e.g., now becomes

pred synth[root: IntNode] {
all eval: Node -> (Int + Bool) when semantics[eval] |
spec[root, eval] }

The existing first-order semantics of Alloy is unaffected, i.e.,
all x when D[x] | P[x] ⇐⇒ all x | D[x] implies P[x]
some x when D[x] | P[x] ⇐⇒ some x | D[x] and P[x] (A.2)

The rule for pushing negation through quantifiers (used by
the converter to NNF) becomes:

not (all x when D[x] | P[x]) ⇐⇒ some x when D[x] | not P[x]
not (some x when D[x] | P[x]) ⇐⇒ all x when D[x] | not P[x]

(which is consistent with classical logic).
The formalization of the Alloy* semantics needs only a min-

imal change. The change in semantics is caused by essentially
not changing (syntactically) how the existential counterpart
of a universal quantifier is obtained— only by flipping the
quantifier, and keeping the domain and the body the same (line
5, Figure 5). Consequently, the candidate condition always
searches for an instance satisfying both the domain and the
body constraint (i.e., both the semantics and the spec). The
same is automatically true for counterexamples obtained in
the verification step. The only actual change to be made to
the formalization is expanding q.body in line 38 according to
the rules in Listing A.2.

Going back to the synthesis example, even after rewriting
the synth predicate, unnecessary overhead is still incurred
by quantifying over valuations for all the nodes, instead
of valuations for just the input variables. Consequently, the
counterexamples produced in the CEGIS loop do not guide
the search as effectively. This observation leads us to our final
formulation of the synth predicate:

pred synth[root: IntNode] {
all env: Var -> Int | some eval: Node -> (Int+Bool)
when env in eval && semantics[eval] | spec[root, eval] }

(A.3)

Despite using nested higher-order quantifiers, it is the most
efficient: the inner quantifier (over eval) always takes exactly
one iteration (to either prove or disprove the current env),
because for a fixed env, eval is uniquely determined.

B. Strictly First-Order Increments
We already pointed out the importance of implementing

the induction step (line 39, Figure 6) using incremental SAT
solving. A problem, however, arises when the encoding of
the counterexample (as defined in lines 38-40) is not a first-
order formula—since not directly translatable to SAT, it cannot
be incrementally added to the existing SAT translation of
the candidate search condition (pcand). In such cases, the
semantics in Figure 6 demands that the conjunction of pcand
and T JfcexK be solved from scratch, losing any benefits from
previously learned SAT clauses.

This problem occurs in our final formulation of the synth

predicate (Listing A.3), due to the nested higher-order quan-
tifiers. To address this issue, we relax the semantics of the
induction step by replacing SJpcand⋏T JfcexKK (line 39) with

fun T fo(f) = match p = T JfK with
| FOL → p
| OR → reduce ⋎, map(T fo, p.disjs)
| E

A → fold ⋏, p.conj, map(T fo, p.qps.pExists)
SJpcand ⋏ T fo(fcex)K

The T fo function ensures that fcex is translated to a first-
order Proc, which can always be added as an increment
to the current SAT translation of the candidate condition.
The trade-off involved here is that this new encoding of the
counterexample is potentially not as strong, and therefore may
lead to more CEGIS iterations before a resolution is reached.
For that reason, Alloy* accepts a configuration parameter
(accessible via the “Options” menu), offering both strategies.
In Section VIII we provide experimental data showing that for
all of our synthesis examples, the strictly first-order increments
yielded better performance.

VIII. EVALUATION

A. Micro Benchmarks
To assess scalability, we measure the time Alloy* takes

to solve 4 classical, higher-order graph problems for graphs
of varying size: max clique, max cut, max independent set, and
min vertex cover. We used the Erdős-Rényi model [17] to
randomly generate graphs to serve as inputs to the benchmark
problems. We generated graphs of sizes ranging from 2 to 50.
To cover a wide range of edge densities, for each size we
generated 5 graphs, using different probabilities of inserting
an edge between a pair of nodes: 0.1, 0.3, 0.5, 0.7, 0.9. We
specified [16, Fig. 9] the graph problems in Alloy and used
Alloy* to solve them. To ensure correctness of the results
returned by Alloy*, we made sure they matched those of
known imperative algorithms for the same problems1. The
timeout for each Alloy* run was set to 100 seconds.

Figure 7 plots two graphs: (a) the average solving time
across graphs size, and (b) the average number of explored
candidates per problem. More detailed results, including indi-
vidual times for each of the 5 densities, can be found in our
technical-report version of this paper [16].

1For max clique and max independent set, we used the Bron-Kerbosch
heuristic algorithm; for the other two, no good heuristic algorithm is known,
and so we implemented enumerative search. In both cases, we used Java.
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Figure 7. Average (over 5 different edge densities) (a) solving times,
and (b) number of explored candidates for the graph algorithms.

The performance results show that for all problems but
max cut, Alloy* was able to handle graphs of sizes up to 50
nodes in less than a minute (max cut started to time out at
around 25 nodes). Our original goal for these benchmarks
was to be able to solve graphs with 10-15 nodes, and claim
that Alloy* can be effectively used for teaching, specification
animation, and small scope bounded verification, all within
the Alloy Analyzer IDE (which is one of the most common
uses of the Alloy technology). These results, however, suggest
that executing higher-order specifications may be feasible even
for declarative programming (where a constraint solver is
embedded in a programming language, e.g., [10], [18], [19]),
which is very encouraging.

The average number of explored candidates (Figure 7(b))
confirms the effectiveness of the CEGIS induction step at
pruning the remainder of the search space. Even for graphs
of size 50, in most cases the average number of explored
candidates is around 6; the exception is, again, max cut, where
this curve is closer to being linear. We further analyze how the
total time is split over individual candidates in Section VIII-D.

B. Program Synthesis

To demonstrate the expressive power of Alloy*, we encoded
123 out of 173 benchmarks available in the SyGuS 2014
GitHub repository [20]—all except those from the “icfp-
problems” folder. We skipped the 50 “icfp” benchmarks be-
cause they all use large (64-bit) bit vectors, which are not
supported by Alloy; none of them could be solved anyway by
any of the solvers that entered the SyGuS 2014 competition.
All of our encoded benchmarks come with the official Alloy*
distribution [5] and are accessible from the main menu:
File→Open Sample Models, then choose hol/sygus.

Some SyGuS benchmarks require synthesizing multiple
functions at once, and some require multiple applications of
the synthesized functions. All of these cases can be handled
with small modifications to our encoding presented in Sec-
tion VI. For example, to synthesize multiple functions at once,
we add additional root node pointers to the signature of the
synth predicate; to allow for multiple applications of the same
function we modify the synth predicate to compute multiple
eval relations (one for each application). Finally, to support
SyGuS benchmarks involving bit vectors, we exposed the
existing Kodkod bitwise operators over integers at the Alloy
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Figure 8. Comparison between Alloy* and Reference Solvers.

level, and also made small changes to the Alloy grammar
to allow for a more flexible integer scope specification (so
that integer atoms can be specified independently of integer
bitwidth).

To evaluate Alloy*’s performance, we ran the same bench-
marks on the same computer using the three reference
solvers. We limit the benchmarks to those found in the
“integer-benchmarks” folder because they: (1) do not use bit
vectors (which Alloy does not support natively), and (2) allow
for the scope to be increased arbitrarily, and thus are suitable
for performance testing. Our test machine had an Intel dual-
core CPU, 4GB of RAM, and ran Ubuntu GNU/Linux and
Sun Java 1.6. We set Alloy*’s solver to be MiniSAT.

Figure 8 compares the performance of Alloy* against the
three SyGuS reference solvers and Sketch [1], a highly-
optimized, state-of-the-art program synthesizer. According
to these results, Alloy* scales better than the three refer-
ence solvers, and is even competitive with Sketch. On the
array-search benchmarks, Sketch outperforms Alloy* for
larger problem sizes, but on the max benchmarks, the opposite
is true. Both solvers scale far more predictably than the
reference solvers, but Alloy* has the additional advantage,
due to its generality, of a flexible encoding of the target
language’s semantics, while Sketch relies on the semantics
of the benchmark problems being the same as its own.

Other researchers have reported [21] that benefits can be
gained by specifying tighter bounds on the abstract syntax
tree nodes considered by the solver. Table I confirms that for
max and array significant gains can be realized by tightening
the bounds. In the case of max, tighter bounds allow Alloy* to
improve from solving the 5-argument version of the problem to
solving the 7-argument version. For these experiments, Scope
1 specifies the exact number of each AST node required; Scope
2 specifies exactly which types of AST nodes are necessary;
and Scope 3 specifies only how many total nodes are needed.
Other solvers also ask the user to bound the analysis—Sketch,
for example, requires both an integer and recursion depth
bound—but do not provide the same fine-grained control over
the bounds as Alloy*. For the comparison results in Figure 8,
we set the most permissive scope (Scope 3) for Alloy*.

These results show that Alloy*, in certain cases, not only
scales better than the reference solvers, but can also be
competitive with state-of-the-art solvers based on years of



Problem Scope 1 Scope 2 Scope 3
Steps Time (s) Steps Time (s) Steps Time (s)

max-2 3 0.3 3 0.4 3 0.4
max-3 6 0.9 7 0.9 8 1.2
max-4 8 1.5 8 3.0 15 5.9
max-5 25 4.2 23 36.3 19 28.6
max-6 29 16.3 n/a t/o n/a t/o
max-7 34 256.5 n/a t/o n/a t/o
array-2 8 1.6 8 2.4 8 1.9
array-3 13 4.0 9 8.1 7 3.6
array-4 15 16.1 11 98.0 15 310.5
array-5 19 386.9 n/a t/o n/a t/o

Table I
PERFORMANCE ON SYNTHESIS BENCHMARKS.

optimization. Such cases are typically those that require a
structurally complex program AST (adhering to complex re-
lational invariants) be discovered from a large search space.
When the size of the synthesized program is small, however,
the results of the SyGuS 2014 competition show [22] that
non-constraint based techniques, such as enumerative and
stochastic search, tend to be more efficient.

Finally, Alloy* requires only the simple model presented
here—which is easier to produce than even the most naive
purpose-built solver. Due to its generality, Alloy* is also,
in some respects, a more flexible program synthesis tool—it
makes it easy, for example, to experiment with the semantics
of the target language, while solvers like Sketch have their
semantics hard-coded.

C. Benefits of the Alloy* Optimizations

We used the program synthesis benchmarks (with the tight-
est, best performing scope), and the bounded verification of
Turán’s theorem from Section II to evaluate the optimizations
introduced in Section VII by running the benchmarks with
and without them. The baseline was a specification written
without using domain constraints and an analysis without
first-order increments. The next two rows correspond to (1)
adding exactly one optimization (rewriting the specification
to use the domain constraints for the synthesis benchmarks,
and using first-order increments for Turán’s theorem2, and
(2) adding both optimizations. Table II shows the results.
Across the board, writing domain constraints makes a huge
difference; using first-order increments often decreases solving
time significantly, and, in the synthesis cases, causes the solver
to scale to slightly larger scopes.

D. Distribution of Solving Time over Individual Candidates

In Figure 9 we take the three hardest benchmarks (max-7,
array-search-5, and turan-10, with tightest bounds and both
optimizations applied) and show how the total solving time is
distributed over individual candidates (which are sequentially
explored by Alloy*). Furthermore, for each candidate we show
the percentage of time that went into each of the three CEGIS
phases (search, verification, induction). Instead of trying to
draw strong conclusions, the main idea behind this experiment

2If we first rewrote Turán’s theorem to use domain constraints, there would
be no nested CEGIS loops left, so increments would be first-order even
without the other optimization.
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Figure 9. Distribution of total solving time over individual (sequen-
tially explored) candidates for the three hardest benchmarks. Each
candidate time is further split into times for each CEGIS phase.

is to illustrate the spectrum of possible behaviors the Alloy*
solving strategy may exhibit at runtime.

The problems seen early in the search tend to be easy in
all cases. The results reveal that later on, however, at least
three different scenarios can happen. In the case of max-7, the
SAT solver is faced with a number of approximately equally
hard problems, which is where the majority of time is spent. In
array-search-5, in contrast, saturation is reached very quickly,
and the most time is spent solving very few hard problems.
For turan-10, the opposite is true: the time spent solving a
large number of very easy problems dominates the total time.

IX. RELATED WORK

The ideas and techniques used in this paper span a number
of different areas of research including constraint solvers,
synthesizers, program verifiers, and executable specification
tools. A brief discussion of how a more powerful analysis
engine for Alloy (as offered by Alloy*) may affect the plethora
of existing tools built on top of Alloy is also in given.

Constraint solvers SMT solvers, by definition, find satis-
fying interpretations of first-order formulas over unbounded
domains. In that context, only quantifier-free fragments are
decidable. Despite that, many solvers (e.g., Z3 [23]) support
certain forms of quantification by implementing an efficient
matching heuristic based on patterns provided by the user [24].
Certain non-standard extension allow quantification over func-
tions and relations for the purpose of checking properties over
recursive predicates [25], as well as model-based quantifier
instantiation [26]. In the general case, however, this approach
often leads to “unknown” being return as the result. Tools



max2 max3 max4 max5 max6 max7 max8 arr2 arr3 arr4 arr5 tur5 tur6 tur7 tur8 tur9 tur10
base 0.4 7.6 t/o t/o t/o t/o t/o 140 t/o t/o t/o 3.5 12.8 235 t/o t/o t/o
base + 1 optimization 0.4 1.0 4.7 10.3 136.4 t/o t/o 2.9 6.3 76.9 t/o 1.1 5.1 43 t/o t/o t/o
base + both 0.3 0.9 1.5 4.2 16.3 163.6 987.3 1.6 4.0 16.1 485.6 0.5 2.1 3.8 15 45 168

Table II
PERFORMANCE OF ALLOY* (IN SECONDS) WITH AND WITHOUT OPTIMIZATIONS.

that build on top of SMT raise the level of abstraction of the
input language and provide quantification patterns that work
more reliably in practice (e.g., [27], [28]), but are limited to
first-order forms.

SAT solvers, on the other hand, are designed to work with
bounded domains. Tools built on top may support logics richer
than propositional formulas, including higher-order quantifiers.
One such tool is Kodkod [14]. At the language level, it allows
quantification over arbitrary relations, but the analysis engine,
however, is not capable of handling those that are higher-
order. Rosette [19] builds on top of Kodkod a suite of tools
for embedding constraint solvers into programs for a variety
of purposes, including synthesis. It implements a synthesis
algorithm internally, so at the user level, unlike Alloy*, this
approach enables only one predetermined form of synthesis,
namely, finding an instantiation of a user-provided grammar
that satisfies a specified property.

Synthesizers State-of-the-art synthesizers today are mainly
purpose-built. Domains of application include program syn-
thesis (e.g., [1], [29]–[32]), automatic grading of program-
ming assignments [33], synthesis of data manipulation regular
expressions [34], and so on, all using different ways for
the user to specify the property to be satisfied. Each such
specialized synthesizer, however, would be hard to apply in
a domain different than its own. A recent effort has been
made to establish a standardized format for program synthesis
problems [4]; this format is syntax-guided, similar to that of
Rosette, and thus less general than the language (arbitrary
predicate logic over relations) offered by Alloy*.

Program Verifiers Program verifiers benefit directly from
expressive specification languages equipped with more pow-
erful analysis tools. In recent years, many efforts have been
made towards automatically verifying programs in higher-
order languages. Liquid types [35] and HMC [36] respectively
adapt known techniques for type inference and abstract inter-
pretation for this task. Bjørner et al. examine direct encodings
into Horn clauses, concluding that current SMT solvers are
effective at solving clauses over integers, reals, and arrays,
but not necessarily over algebraic datatypes. Dafny [28] is the
first SMT-based verifier to provide language-level mechanisms
specifically for automating proofs by co-induction [37].

Executable Specifications Many research projects explore
the idea of extending a programming language with symbolic
constraint-solving features (e.g., [10], [11], [19], [38], [39]).
Limited by the underlying constraint solvers, none of these
tools can execute a higher-order constraint. In contrast, we
used αRby [18] (our most recent take on this idea where we
embed the entire Alloy language directly into Ruby), equipped
with Alloy* as its engine, to run all our graph experiments
(where αRby automatically translated input partial instances

from concrete graphs, as well as solutions returned from
Alloy back to Ruby objects), demonstrating how a higher-
order constraint solver can be practical in this area.

Existing Alloy Tools Certain tools built using Alloy already
provide means for achieving tasks similar to those we used
as Alloy* examples. Aluminum [40], for instance, extends the
Alloy Analyzer with a facility for minimizing solutions. It does
so by using the low-level Kodkod API to selectively remove
tuples from the resulting tuple set. In our graph examples, we
were faced with similar tasks (e.g., minimizing vertex covers),
but, in contrast, we used a purely declarative constraint to
assert that there is no other satisfying solution with fewer
tuples. While Aluminum is likely to perform better on this
particular task, we showed in this paper (Section VIII-A) that
even the most abstract form of specifying such minimization/-
maximization tasks scales reasonably well.

Rayside et al. used the Alloy Analyzer to synthesize iterators
from abstraction functions [41], as well as complex (non-pure)
AVL tree operations from abstract specifications [42]. In both
cases, they target a very specific categories of programs, and
their approach is based on insights that hold only for those
particular categories.

X. CONCLUSION

Software analysis and synthesis tools have typically pro-
gressed by the discovery of new algorithmic methods in
specialized contexts, and then their subsequent generalization
as solutions to more abstract mathematical problems. This
trend—evident in the history of dataflow analysis, symbolic
evaluation, abstract interpretation, model checking, and con-
straint solving—brings many benefits. First, the translation
of a class of problems into a single, abstract and general
formulation allows researchers to focus more sharply, resulting
in deeper understanding, cleaner APIs and more efficient
algorithms. Second, generalization across multiple domains
allows insights to be exploited more widely, and reduces the
cost of tool infrastructure through sharing of complex analytic
components. And third, the identification of a new, reusable
tool encourages discovery of new applications.

In this paper, we have argued that the time is ripe to view
higher-order constraint solving in this context, and we have
proposed a generalization of a variety of algorithms that we
believe suggests that the productive path taken by first-order
solving might be taken by higher-order solving too.
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